Opis bibliograficzny
Tytuł: |
B\'uchi-Elgot-Trakhtenbrot Theorem for Higher-Dimensional Automata |
Autorzy: |
Amrane, Amazigh, Bazille, Hugo, Clement, Emily, Fahrenberg, Uli, Fortin, Marie, Ziemiański, Krzysztof |
Rok wydania: |
2025 |
Kolekcja: |
Computer Science |
Hasła: |
Computer Science - Formal Languages and Automata Theory |
Opis: |
In this paper we explore languages of higher-dimensional automata (HDAs) from an algebraic and logical point of view. Such languages are sets of finite width-bounded interval pomsets with interfaces (ipomsets) closed under order extension. We show that ipomsets can be represented as equivalence classes of words over a particular alphabet, called step sequences. We introduce an automaton model that recognize such languages. Doing so allows us to lift the classical B\"uchi-Elgot-Trakhtenbrot Theorem to languages of HDAs: we prove that a set of interval ipomsets is the language of an HDA if and only if it is simultaneously MSO-definable, of bounded width, and closed under order refinement. |
Typ dokumentu: |
Working Paper |
URL dostępu: |
http://arxiv.org/abs/2505.10461 |
Numer dostępu: |
edsarx.2505.10461 |
Baza danych: |
arXiv |