B\'uchi-Elgot-Trakhtenbrot Theorem for Higher-Dimensional Automata

Detalles Bibliográficos
Title: B\'uchi-Elgot-Trakhtenbrot Theorem for Higher-Dimensional Automata
Autores: Amrane, Amazigh, Bazille, Hugo, Clement, Emily, Fahrenberg, Uli, Fortin, Marie, Ziemiański, Krzysztof
Ano de Publicación: 2025
Colección: Computer Science
Subject Terms: Computer Science - Formal Languages and Automata Theory
Descripción: In this paper we explore languages of higher-dimensional automata (HDAs) from an algebraic and logical point of view. Such languages are sets of finite width-bounded interval pomsets with interfaces (ipomsets) closed under order extension. We show that ipomsets can be represented as equivalence classes of words over a particular alphabet, called step sequences. We introduce an automaton model that recognize such languages. Doing so allows us to lift the classical B\"uchi-Elgot-Trakhtenbrot Theorem to languages of HDAs: we prove that a set of interval ipomsets is the language of an HDA if and only if it is simultaneously MSO-definable, of bounded width, and closed under order refinement.
Tipo de documento: Working Paper
URL de acceso: http://arxiv.org/abs/2505.10461
Número de acceso: edsarx.2505.10461
Base de Datos: arXiv
Descripción
Descrición non dispoñible