B\'uchi-Elgot-Trakhtenbrot Theorem for Higher-Dimensional Automata

Détails bibliographiques
Titre: B\'uchi-Elgot-Trakhtenbrot Theorem for Higher-Dimensional Automata
Auteurs: Amrane, Amazigh, Bazille, Hugo, Clement, Emily, Fahrenberg, Uli, Fortin, Marie, Ziemiański, Krzysztof
Année de publication: 2025
Collection: Computer Science
Mots-clés sujets: Computer Science - Formal Languages and Automata Theory
Description: In this paper we explore languages of higher-dimensional automata (HDAs) from an algebraic and logical point of view. Such languages are sets of finite width-bounded interval pomsets with interfaces (ipomsets) closed under order extension. We show that ipomsets can be represented as equivalence classes of words over a particular alphabet, called step sequences. We introduce an automaton model that recognize such languages. Doing so allows us to lift the classical B\"uchi-Elgot-Trakhtenbrot Theorem to languages of HDAs: we prove that a set of interval ipomsets is the language of an HDA if and only if it is simultaneously MSO-definable, of bounded width, and closed under order refinement.
Type de document: Working Paper
URL d'accès: http://arxiv.org/abs/2505.10461
Numéro d'inventaire: edsarx.2505.10461
Base de données: arXiv
Description
Aucune description n'est disponible.