B\'uchi-Elgot-Trakhtenbrot Theorem for Higher-Dimensional Automata

Podrobná bibliografie
Název: B\'uchi-Elgot-Trakhtenbrot Theorem for Higher-Dimensional Automata
Autoři: Amrane, Amazigh, Bazille, Hugo, Clement, Emily, Fahrenberg, Uli, Fortin, Marie, Ziemiański, Krzysztof
Rok vydání: 2025
Sbírka: Computer Science
Témata: Computer Science - Formal Languages and Automata Theory
Popis: In this paper we explore languages of higher-dimensional automata (HDAs) from an algebraic and logical point of view. Such languages are sets of finite width-bounded interval pomsets with interfaces (ipomsets) closed under order extension. We show that ipomsets can be represented as equivalence classes of words over a particular alphabet, called step sequences. We introduce an automaton model that recognize such languages. Doing so allows us to lift the classical B\"uchi-Elgot-Trakhtenbrot Theorem to languages of HDAs: we prove that a set of interval ipomsets is the language of an HDA if and only if it is simultaneously MSO-definable, of bounded width, and closed under order refinement.
Druh dokumentu: Working Paper
Přístupová URL adresa: http://arxiv.org/abs/2505.10461
Přístupové číslo: edsarx.2505.10461
Databáze: arXiv
Popis
Žádný popis.