Big data analytics and knowledge discovery : 25th International Conference, DaWaK 2023, Penang, Malaysia, August 28-30, 2023, Proceedings / Robert Wrembel, Johann Gamper, Gabriele Kotsis, A Min Tjoa, Ismail Khalil, editors.
שמור ב:
מחבר תאגידי: | |
---|---|
מחברים אחרים: | , , , , |
פורמט: | ספר אלקטרוני |
שפה: | English |
יצא לאור: |
Cham, Switzerland :
Springer,
2023.
|
סדרה: | Lecture notes in computer science ;
14148. |
נושאים: | |
גישה מקוונת: | Click for online access |
תוכן הענינים:
- Intro
- Preface
- Organization
- From an Interpretable Predictive Model to a Model Agnostic Explanation (Abstract of Keynote Talk)
- Contents
- Data Quality
- Using Ontologies as Context for Data Warehouse Quality Assessment
- 1 Introduction
- 2 Related Work
- 3 Preliminaries
- 3.1 Running Example
- 3.2 Data Warehouse Formal Specification
- 3.3 Context Formal Specification
- 4 Data Warehouse to Ontology Mapping
- 5 Context-Based Data Quality Rules
- 6 Experimentation
- 6.1 Implementation
- 6.2 Validation
- 7 Conclusions and Future Work
- References
- Preventing Technical Errors in Data Lake Analyses with Type Theory
- 1 Introduction
- 2 Related Works
- 3 Type-Theoretical Framework
- 4 Conclusion
- References
- EXOS: Explaining Outliers in Data Streams
- 1 Introduction
- 2 Related Work
- 3 Preliminaries
- 4 The Proposed Algorithm: EXOS
- 4.1 Estimator
- 4.2 Temporal Neighbor Clustering
- 4.3 Outlying Attribute Generators
- 5 Evaluation
- 5.1 Experimental Setup
- 5.2 Results and Analysis
- 6 Conclusions
- References
- Motif Alignment for Time Series Data Augmentation
- 1 Introduction
- 2 Preliminaries
- 2.1 Matrix Profile
- 2.2 Pan-Matrix Profile
- 2.3 DTW Alignment for Time Series Data Augmentation
- 3 Proposed Method
- 3.1 Motif Mapping
- 3.2 Time Series Augmentation
- 4 Experimental Evaluation
- 4.1 Setup
- 4.2 Aligning Time Series Using MotifDTW
- 4.3 Performance Gain
- 5 Conclusion
- References
- State-Transition-Aware Anomaly Detection Under Concept Drifts
- 1 Introduction
- 2 Related Works
- 3 Problem Definition
- 3.1 Terminology
- 3.2 Problem Statement
- 4 State-Transition-Aware Anomaly Detection
- 4.1 Reconstruction and Latent Representation Learning
- 4.2 Drift Detection in the Latent Space
- 4.3 State Transition Model
- 5 Experiment
- 5.1 Experiment Setup
- 5.2 Performance
- 6 Conclusion
- References
- Anomaly Detection in Financial Transactions Via Graph-Based Feature Aggregations
- 1 Introduction
- 2 Related Work
- 2.1 Graph Embedding
- 2.2 Anomaly Detection
- 3 Problem Formalization
- 4 Proposed Method
- 4.1 PFA: Proximal Feature Aggregation
- 4.2 AFA: Anomaly Feature Aggregation
- 5 Experiment
- 5.1 Experimental Setup
- 5.2 Effectiveness Evaluation
- 5.3 Scalability Evaluation
- 6 Conclusion
- References
- The Synergies of Context and Data Aging in Recommendations
- 1 Introduction
- 2 ALBA: Adding Aging to LookBack Apriori
- 3 Context Modeling
- 4 Evaluation
- 4.1 Contexts
- 4.2 Methodology
- 4.3 Fitbit Validation
- 4.4 Auditel Validation
- 5 Conclusions and Future Work
- References
- Advanced Analytics and Pattern Discovery
- Hypergraph Embedding Based on Random Walk with Adjusted Transition Probabilities
- 1 Introduction
- 2 Related Work
- 3 Preliminaries
- 3.1 Notation
- 3.2 Hypergraph Projection
- 3.3 Random Walk and Stationary Distribution
- 3.4 Skip-Gram