Přeskočit na obsah
This is the test environment.
The production environment is at
library.holycross.edu
This is the test environment.
The production environment is at
library.holycross.edu
This is the test environment.
The production environment is at
library.holycross.edu
This is the test environment.
The production environment is at
library.holycross.edu
Library Home
Start Over
Research Databases
E-Journals
Rezervace kurzů
Library Home
Přihlásit
English
Deutsch
Español
Français
Italiano
日本語
Nederlands
Português
Português (Brasil)
中文(简体)
中文(繁體)
Türkçe
עברית
Gaeilge
Cymraeg
Ελληνικά
Català
Euskara
Русский
Čeština
Suomi
Svenska
polski
Dansk
slovenščina
اللغة العربية
বাংলা
Galego
Tiếng Việt
Hrvatski
हिंदी
Հայերէն
Українська
Jazyk
Library Catalog
Vše
Název
Autor
Téma
Signatura
ISBN/ISSN
Hledat
Pokročilé vyhledávání
|
Procházet
|
Tipy pro vyhledávání
|
New Books Carousel
Machine learning and knowledge...
Vytvořit citaci
Zaslat SMS
Poslat e-mailem
Vytisknout
Exportovat záznam
Exportovat do RefWorks
Exportovat do EndNoteWeb
Exportovat do EndNote
Přidat do oblíbených
Trvalý odkaz
Machine learning and knowledge discovery in databases : Part II / Research track : European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings. Nuria Oliver, Fernando Pérez-Cruz, Stefan Kramer, Jesse Read, Jose A. Lozano (eds.).
Uloženo v:
Podrobná bibliografie
Korporativní autor:
ECML PKDD (Conference) Online)
Další autoři:
Oliver, Nuria, 1970-
(Editor)
,
Pérez-Cruz, Fernando
(Editor)
,
Kramer, Stefan, Prof. Dr
(Editor)
,
Read, Jesse
(Editor)
,
Lozano, José A., 1968-
(Editor)
Médium:
E-kniha
Jazyk:
English
Vydáno:
Cham, Switzerland :
Springer,
2021.
Edice:
Lecture notes in computer science. Lecture notes in artificial intelligence.
Lecture notes in computer science ;
12976.
LNCS sublibrary. Artificial intelligence.
Témata:
Machine learning
>
Congresses.
Data mining
>
Congresses.
Data mining
Machine learning
proceedings (reports)
Conference papers and proceedings
Conference papers and proceedings.
Actes de congrès.
On-line přístup:
Click for online access
Jednotky
Popis
Obsah
UNIMARC/MARC
Obsah:
Intro
Preface
Organization
Contents
Part II
Generative Models
Non-exhaustive Learning Using Gaussian Mixture Generative Adversarial Networks
1 Introduction
2 Related Work
3 Background
4 Methodology
5 Experiments
6 Conclusion
References
Unsupervised Learning of Joint Embeddings for Node Representation and Community Detection
1 Introduction
2 Related Work
2.1 Community Detection
2.2 Node Representation Learning
2.3 Joint Community Detection and Node Representation Learning
3 Methodology
3.1 Problem Formulation
3.2 Variational Model
3.3 Design Choices
3.4 Practical Aspects
3.5 Complexity
4 Experiments
4.1 Synthetic Example
4.2 Datasets
4.3 Baselines
4.4 Settings
4.5 Discussion of Results
4.6 Hyperparameter Sensitivity
4.7 Training Time
4.8 Visualization
5 Conclusion
References
GraphAnoGAN: Detecting Anomalous Snapshots from Attributed Graphs
1 Introduction
2 Related Work
3 Problem Definition
4 Proposed Algorithm
4.1 GAN Modeling
4.2 Architecture
4.3 Training Procedure
5 Datasets
6 Experiments
6.1 Baselines
6.2 Comparative Evaluation
6.3 Side-by-Side Diagnostics
7 Conclusion
References
The Bures Metric for Generative Adversarial Networks
1 Introduction
2 Method
3 Empirical Evaluation of Mode Collapse
3.1 Artificial Data
3.2 Real Images
4 High Quality Generation Using a ResNet Architecture
5 Conclusion
References
Generative Max-Mahalanobis Classifiers for Image Classification, Generation and More
1 Introduction
2 Background and Related Work
2.1 Energy-Based Models
2.2 Alternatives to the Softmax Classifier
3 Methodology
3.1 Approach 1: Discriminative Training
3.2 Approach 2: Generative Training
3.3 Approach 3: Joint Training
3.4 GMMC for Inference
4 Experiments
4.1 Hybrid Modeling
4.2 Calibration
4.3 Out-Of-Distribution Detection
4.4 Robustness
4.5 Training Stability
4.6 Joint Training
5 Conclusion and Future Work
References
Gaussian Process Encoders: VAEs with Reliable Latent-Space Uncertainty
1 Introduction
1.1 Contributions
2 Background
2.1 Variational Autoencoder
2.2 Latent Variance Estimates of NN
2.3 Mismatch Between the Prior and Approximate Posterior
3 Methodology
3.1 Gaussian Process Encoder
3.2 The Implications of a Gaussian Process Encoder
3.3 Out-of-Distribution Detection
4 Experiments
4.1 Log Likelihood
4.2 Uncertainty in the Latent Space
4.3 Benchmarking OOD Detection
4.4 OOD Polution of the Training Data
4.5 Synthesizing Variants of Input Data
4.6 Interpretable Kernels
5 Related Work
6 Conclusion
References
Variational Hyper-encoding Networks
1 Introduction
2 Variational Autoencoder (VAE)
3 Variational Hyper-encoding Networks
Podobné jednotky
Machine learning and knowledge discovery in databases : Research track : European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings. Part III
Vydáno: (2021)
Machine learning and knowledge discovery in databases : Research track : European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings. Part I
Vydáno: (2021)
Machine learning and knowledge discovery in databases : Applied data science track : European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings. Part V
Vydáno: (2021)
Machine learning and knowledge discovery in databases : Applied data science track : European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021, Proceedings. Part IV
Vydáno: (2021)
Machine learning and knowledge discovery in databases : European Conference, ECML PKDD 2019, Würzburg, Germany, September 16-20, 2019, Proceedings. Part I
Vydáno: (2020)