Skip to content
This is the test environment.
The production environment is at
library.holycross.edu
This is the test environment.
The production environment is at
library.holycross.edu
This is the test environment.
The production environment is at
library.holycross.edu
This is the test environment.
The production environment is at
library.holycross.edu
Library Home
Start Over
Research Databases
E-Journals
課程儲備
Library Home
登錄
English
Deutsch
Español
Français
Italiano
日本語
Nederlands
Português
Português (Brasil)
中文(简体)
中文(繁體)
Türkçe
עברית
Gaeilge
Cymraeg
Ελληνικά
Català
Euskara
Русский
Čeština
Suomi
Svenska
polski
Dansk
slovenščina
اللغة العربية
বাংলা
Galego
Tiếng Việt
Hrvatski
हिंदी
Հայերէն
Українська
語言
Library Catalog
EBSCO Discovery Service
全文檢索
題名
作者
主題
索引號
ISBN/ISSN
檢索
高級檢索
|
Browse
|
檢索技巧
|
New Books
The theory of error correcting...
引用
發送短信
推薦此
打印
導出紀錄
導出到 RefWorks
導出到 EndNoteWeb
導出到 EndNote
加到收藏夾
Permanent link
The theory of error correcting codes / F.J. MacWilliams, N.J.A. Sloane.
Saved in:
書目詳細資料
Main Authors:
MacWilliams, F. J. (Florence Jessie), 1917-
,
Sloane, N. J. A. (Neil James Alexander), 1939-
(Author)
格式:
電子書
語言:
English
出版:
Amsterdam ; New York : New York :
North-Holland Pub. Co. ; Sole distributors for the U.S.A. and Canada, Elsevier/North-Holland,
1977.
叢編:
North-Holland mathematical library ;
v. 16.
主題:
Error-correcting codes (Information theory)
COMPUTERS
>
Data Processing.
Coderingstheorie.
Storingsonderdrukking.
在線閱讀:
Click for online access
持有資料
實物特徵
書本目錄
職員瀏覽
書本目錄:
Front Cover; The Theory of Error-Correcting Codes; Copyright Page; Preface; Preface to the third printing; Contents; Chapter 1. Linear codes; 1. Linear codes; 2. Properties of a linear code; 3. At the receiving end; 4. More about decoding a linear code; 5. Error probability; 6. Shannon's theorem on the existence of good codes; 7. Hamming codes; 8. The dual code; 9. Construction of new codes from old (II); 10. Some general properties of a linear code; 11. Summary of Chapter 1; Notes on Chapter 1; Chapter 2. Nonlinear codes, Hadamard matrices, designs and the Golay code; 1. Nonlinear codes
2. The Plotkin bound3. Hadamard matrices and Hadamard codes; 4. Conferences matrices; 5. t-designs; 6. An introduction to the binary Golay code; 7. The Steiner system S(5, 6, 12), and nonlinear single-error correcting codes; 8. An introduction to the Nordstrom-Robinson code; 9. Construction of new codes from old (III); Notes on Chapter 2; Chapter 3. An introduction to BCH codes and finite fields; 1. Double-error-correcting BCH codes (I); 2. Construction of the field GF(16); 3. Double-error-correcting BCH codes (II); 4. Computing in a finite field; Notes on Chapter 3; Chapter 4. Finite fields
1. Introduction2. Finite fields: the basic theory; 3. Minimal polynomials; 4. How to find irreducible polynomials; 5. Tables of small fields; 6. The automorphism group of GF(pm); 7. The number of irreducible polynomials; 8. Bases of GF(pm) over GF(p); 9. Linearized polynomials and normal bases; Notes on Chapter 4; Chapter 5. Dual codes and their weight distribution; 1. Introduction; 2. Weight distribution of the dual of a binary linear code; 3. The group algebra; 4. Characters; 5. MacWilliams theorem for nonlinear codes; 6. Generalized MacWilliams theorems for linear codes
7. Properties of Krawtchouk polynomialsNotes on Chapter 5; Chapter 6. Codes. designs and perfect codes; 1. Introduction; 2. Four fundamental parameters of a code; 3. An explicit formula for the weight and distance distribution; 4. Designs from codes when s = d'; 5. The dual code also gives designs; 6. Weight distribution of translates of a code; 7. Designs from nonlinear codes when s' = d; 8. Perfect codes; 9. Codes over GF(q); 10. There are no more perfect codes; Notes on Chapter 6; Chapter 7. Cyclic codes; 1. Introduction; 2. Definition of a cyclic code; 3. Generator polynomial
4. The check polynomial5. Factors of Xn
1; 6. t-error-correcting BCH codes; 7. Using a matrix over GF(qn) to define a code over GF(q); 8. Encoding cyclic codes; Notes on Chapter 7; Chapter 8. Cyclic codes (contd.): Idempotents and Mattson-Solomon polynomials; 1. Introduction; 2. Idempotents; 3. Minimal ideals. irreducible codes. and primitive idempotents; 4. Weight distribution of minimal codes; 5. The automorphism group of a code; 6. The Mattson-Solomon polynomial; 7. Some weight distributions; Notes on Chapter 8; Chapter 9. BCH codes; 1. Introduction
相似書籍
A course in algebraic error-correcting codes
由: Ball, Simeon (Simeon Michael)
出版: (2020)
The theory of error correcting codes
由: MacWilliams, F. J. (Florence Jessie), 1917-
出版: (1993)
A practical guide to error-control coding using Matlab
由: Jiang, Yuan
出版: (2010)
Quantum error correction : symmetric, asymmetric, synchronizable, and convolutional codes
由: La Guardia, Giuliano Gadioli
出版: (2020)
Error-correcting codes.
由: Peterson, W. Wesley (William Wesley), 1924-
出版: (1961)