تخطي إلى المحتوى
This is the test environment.
The production environment is at
library.holycross.edu
This is the test environment.
The production environment is at
library.holycross.edu
This is the test environment.
The production environment is at
library.holycross.edu
This is the test environment.
The production environment is at
library.holycross.edu
Library Home
Start Over
Research Databases
E-Journals
الحجز الأكاديمي
Library Home
تسجيل الدخول
English
Deutsch
Español
Français
Italiano
日本語
Nederlands
Português
Português (Brasil)
中文(简体)
中文(繁體)
Türkçe
עברית
Gaeilge
Cymraeg
Ελληνικά
Català
Euskara
Русский
Čeština
Suomi
Svenska
polski
Dansk
slovenščina
اللغة العربية
বাংলা
Galego
Tiếng Việt
Hrvatski
हिंदी
Հայերէն
Українська
اللغة
Library Catalog
EBSCO Discovery Service
كل الحقول
العنوان
المؤلف
الموضوع
رقم الاستدعاء
ردمك/تدمد
ابحث
بحث متقدم
|
Browse
|
إرشادات حول معاملات البحث
|
New Books
The theory of error correcting...
استشهد بهذا
أرسل هذا في رسالة قصيرة
أرسل هذا بالبريد الإلكتروني
طباعة
تصدير التسجيلة
تصدير إلى RefWorks
تصدير إلى EndNoteWeb
تصدير إلى EndNote
أضف إلى المفضلة
رابط دائم
The theory of error correcting codes / F.J. MacWilliams, N.J.A. Sloane.
محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون:
MacWilliams, F. J. (Florence Jessie), 1917-
,
Sloane, N. J. A. (Neil James Alexander), 1939-
(مؤلف)
التنسيق:
كتاب الكتروني
اللغة:
English
منشور في:
Amsterdam ; New York : New York :
North-Holland Pub. Co. ; Sole distributors for the U.S.A. and Canada, Elsevier/North-Holland,
1977.
سلاسل:
North-Holland mathematical library ;
v. 16.
الموضوعات:
Error-correcting codes (Information theory)
COMPUTERS
>
Data Processing.
Coderingstheorie.
Storingsonderdrukking.
الوصول للمادة أونلاين:
Click for online access
المقتنيات
الوصف
جدول المحتويات
عرض للأخصائي
جدول المحتويات:
Front Cover; The Theory of Error-Correcting Codes; Copyright Page; Preface; Preface to the third printing; Contents; Chapter 1. Linear codes; 1. Linear codes; 2. Properties of a linear code; 3. At the receiving end; 4. More about decoding a linear code; 5. Error probability; 6. Shannon's theorem on the existence of good codes; 7. Hamming codes; 8. The dual code; 9. Construction of new codes from old (II); 10. Some general properties of a linear code; 11. Summary of Chapter 1; Notes on Chapter 1; Chapter 2. Nonlinear codes, Hadamard matrices, designs and the Golay code; 1. Nonlinear codes
2. The Plotkin bound3. Hadamard matrices and Hadamard codes; 4. Conferences matrices; 5. t-designs; 6. An introduction to the binary Golay code; 7. The Steiner system S(5, 6, 12), and nonlinear single-error correcting codes; 8. An introduction to the Nordstrom-Robinson code; 9. Construction of new codes from old (III); Notes on Chapter 2; Chapter 3. An introduction to BCH codes and finite fields; 1. Double-error-correcting BCH codes (I); 2. Construction of the field GF(16); 3. Double-error-correcting BCH codes (II); 4. Computing in a finite field; Notes on Chapter 3; Chapter 4. Finite fields
1. Introduction2. Finite fields: the basic theory; 3. Minimal polynomials; 4. How to find irreducible polynomials; 5. Tables of small fields; 6. The automorphism group of GF(pm); 7. The number of irreducible polynomials; 8. Bases of GF(pm) over GF(p); 9. Linearized polynomials and normal bases; Notes on Chapter 4; Chapter 5. Dual codes and their weight distribution; 1. Introduction; 2. Weight distribution of the dual of a binary linear code; 3. The group algebra; 4. Characters; 5. MacWilliams theorem for nonlinear codes; 6. Generalized MacWilliams theorems for linear codes
7. Properties of Krawtchouk polynomialsNotes on Chapter 5; Chapter 6. Codes. designs and perfect codes; 1. Introduction; 2. Four fundamental parameters of a code; 3. An explicit formula for the weight and distance distribution; 4. Designs from codes when s = d'; 5. The dual code also gives designs; 6. Weight distribution of translates of a code; 7. Designs from nonlinear codes when s' = d; 8. Perfect codes; 9. Codes over GF(q); 10. There are no more perfect codes; Notes on Chapter 6; Chapter 7. Cyclic codes; 1. Introduction; 2. Definition of a cyclic code; 3. Generator polynomial
4. The check polynomial5. Factors of Xn
1; 6. t-error-correcting BCH codes; 7. Using a matrix over GF(qn) to define a code over GF(q); 8. Encoding cyclic codes; Notes on Chapter 7; Chapter 8. Cyclic codes (contd.): Idempotents and Mattson-Solomon polynomials; 1. Introduction; 2. Idempotents; 3. Minimal ideals. irreducible codes. and primitive idempotents; 4. Weight distribution of minimal codes; 5. The automorphism group of a code; 6. The Mattson-Solomon polynomial; 7. Some weight distributions; Notes on Chapter 8; Chapter 9. BCH codes; 1. Introduction
مواد مشابهة
A course in algebraic error-correcting codes
حسب: Ball, Simeon (Simeon Michael)
منشور في: (2020)
The theory of error correcting codes
حسب: MacWilliams, F. J. (Florence Jessie), 1917-
منشور في: (1993)
A practical guide to error-control coding using Matlab
حسب: Jiang, Yuan
منشور في: (2010)
Quantum error correction : symmetric, asymmetric, synchronizable, and convolutional codes
حسب: La Guardia, Giuliano Gadioli
منشور في: (2020)
Error-correcting codes.
حسب: Peterson, W. Wesley (William Wesley), 1924-
منشور في: (1961)