Unsupervised Blind Speech Separation with a Diffusion Prior

التفاصيل البيبلوغرافية
العنوان: Unsupervised Blind Speech Separation with a Diffusion Prior
المؤلفون: Xu, Zhongweiyang, Fan, Xulin, Wang, Zhong-Qiu, Jiang, Xilin, Choudhury, Romit Roy
سنة النشر: 2025
المجموعة: Computer Science
مصطلحات موضوعية: Electrical Engineering and Systems Science - Audio and Speech Processing, Computer Science - Machine Learning, Computer Science - Multimedia, Computer Science - Sound, Electrical Engineering and Systems Science - Signal Processing
الوصف: Blind Speech Separation (BSS) aims to separate multiple speech sources from audio mixtures recorded by a microphone array. The problem is challenging because it is a blind inverse problem, i.e., the microphone array geometry, the room impulse response (RIR), and the speech sources, are all unknown. We propose ArrayDPS to solve the BSS problem in an unsupervised, array-agnostic, and generative manner. The core idea builds on diffusion posterior sampling (DPS), but unlike DPS where the likelihood is tractable, ArrayDPS must approximate the likelihood by formulating a separate optimization problem. The solution to the optimization approximates room acoustics and the relative transfer functions between microphones. These approximations, along with the diffusion priors, iterate through the ArrayDPS sampling process and ultimately yield separated voice sources. We only need a simple single-speaker speech diffusion model as a prior along with the mixtures recorded at the microphones; no microphone array information is necessary. Evaluation results show that ArrayDPS outperforms all baseline unsupervised methods while being comparable to supervised methods in terms of SDR. Audio demos are provided at: https://arraydps.github.io/ArrayDPSDemo/.
Comment: Paper Accepted at ICML2025 Demo: https://arraydps.github.io/ArrayDPSDemo/ Code: https://github.com/ArrayDPS/ArrayDPS
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2505.05657
رقم الانضمام: edsarx.2505.05657
قاعدة البيانات: arXiv
الوصف
الوصف غير متاح.